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Abstract. By perturbative calculations of the high-temperature ground-state axial vector current of
fermion fields coupled to gauge fields, an anomalous Chern–Simons topological mass term is induced
in the three-dimensional effective action. The anomaly in three dimensions appears just in the ground-
state current rather than in the divergence of ground-state current. In the Abelian case, the contribution
comes only from the vacuum polarization graph, whereas in the non-Abelian case, contributions come
from the vacuum polarization graph and the two triangle graphs. The relation between the quantization of
the Chern–Simons coefficient and the Dirac quantization condition of magnetic charge is also obtained. It
implies that in a (2+1)-dimensional QED with the Chern–Simons topological mass term and a magnetic
monopole with magnetic charge g present, the Chern–Simons coefficient must be also quantized, just as in
the non-Abelian case.

1 Introduction

It is well known that there are anomalous terms in the
Ward identities for axial currents in four-dimensional space-
time [1]. By perturbative calculations for the triangle dia-
grams of axial vector currents in fermion fields coupled to
gauge fields, it is found that there is an additional anoma-
lous term in the divergence of axial vector current [2], if
we make the divergence of the vector current keep con-
servation. This leads us to the question: What happens
in three-dimensional space theories? Here we shall answer
this question.

In this paper, within the framework of the imaginary
time formalism of finite-temperature gauge field theory
[3], we make the perturbative calculations for a ground-
state axial vector current in four-dimensional space-time
at high-temperature limit, i.e., the time compactification;
the four-dimensional space is then reduced to the three-
dimensional space, and we therefore get an additional ano-
malous term in the three-dimensional ground-state axial
vector current. Moreover, we get an anomalous Chern–
Simons topological mass term [4–6] in the three-dimensio-
nal effective action.

We consider the radiative generation of a Chern–Si-
mons topological mass term in the high-temperature ef-
fective action of a gauge field theory coupled to fermion
fields. It is known that the fermionic current axial vector
is partially conserved and that there are anomalies of the
current axial vector.

The Chern–Simons topological mass term is gauge-
invariant under large (nontrivial) gauge transformations
only if its coefficient is quantized [5]. In the non-Abelian
case, for any semisimple Lie group G, the gauge trans-

formations are characterized by the topological classes la-
beled by Π3(G) = Z, corresponding to the mapping of
S3 of compactified three-dimensional space to the group
G [5,7]. Under the gauge transformations with a nonva-
nishing winding number, the Chern–Simons action is not
invariant, but for invariance of the exponentiated Chern–
Simons action to be ensured, the Chern–Simons coefficient
must be quantized. In the Abelian case, there are no in-
stantons [8], but in the existence of a magnetic monopole,
the Chern–Simons coefficient must be also quantized.

The paper is organized as follows. In the next section,
the Chern–Simons term is induced at high temperature. In
Sect. 3, we describe and discuss the quantization of Chern–
Simons coefficient. Conclusions are presented in Sect. 4.

2 The Chern–Simons term
induced at high temperature

Let us start with the ground-state current axial vector of
Dirac fields in four-dimensional space-time [9]:

〈0|Jµ5(x)|0〉 = 〈0|1
2
[Ψ̄(x), γµγ5Ψ(x)]−|0〉

= −Tr[γµγ5G(x, x′)]|x′→x (1)

where G(x, x′) is the Dirac propagator in interaction with
an electromagnetic field Aµ(x) and satisfies following equa-
tion:

( /D − m)G(x, x′) = δ4(x − x′) (2)

with
/D = i/∂ − e /A = γµ(i∂µ − eAµ(x)). (3)
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Within the imaginary time formalism of finite-tempe-
rature gauge-field theory, the ground-state current axial
vector can be expanded perturbatively at one-loop level
in momentum space:
∫

−

d4p1

(2π)4
Tr[γµγ5G(p1)](2π)3βδ3(~p − ~p′)δωn−ωn′

=
∫

−

d4p1

(2π)4
Tr[γµγ5G0(p1)](2π)3βδ3(~p − ~p′)δωn−ωn′

−e

∫
−

d4p1

(2π)4

∫
+

d4k

(2π)4
Tr[γµγ5G0(p1) /A(k)G0(p1 − k)]

×(2π)3βδ3(~p − ~p′ − ~k)δωn−ωn′ −ωm

+e2
∫

−

d4p1

(2π)4

∫
+

d4k1

(2π)4

∫
+

d4k2

(2π)4

×Tr[γµγ5G0(p1 + k2) /A(k2)G0(p1) /A(k1)G0(p1 − k1)]

×(2π)3βδ3(~p − ~p′ − ~k1 − ~k2)δωn−ωn′ −ωm1−ωm2

−e3
∫

−

d4p1

(2π)4

∫
+

d4k1

(2π)4

∫
+

d4k2

(2π)4

∫
+

d4k3

(2π)4

×Tr
[
γµγ5G0(p1 + k3) /A(k3)G0(p1) /A(k2)

×G0(p1 − k2) /A(k1)G0(p1 − k2 − k1)
]

×(2π)3βδ3(~p − ~p′ − ~k1 − ~k2 − ~k3)
×δωn−ωn′ −ωm1−ωm2−ωm3

+ · ·· (4)

with
∫

−

d4p

(2π)4
=

1
β

∑
n

∫
d3~p

(2π)3
, p0 = ωn

=
(2n + 1)π

β
, for fermions, (5)

and
∫

+

d4k

(2π)4
=

1
β

∑
m

∫
d3~k

(2π)3
, k0 = ωm

=
2mπ

β
, for bosons, (6)

(2π)4δ4(p − p′) = (2π)3δ3(~p − ~p′)βδωn−ωn′ (7)

where G0(p) is a free Dirac propagator, T = 1/β is the
temperature, and m, n = 0,±1,±2,±3, ....

At the high-temperature limit, T → ∞, i.e., the time
compactification, the four-dimensional space-time is re-
duced to the three-dimensional space; therefore, the super-
ficial degrees of divergence in the integrands of the right
side of (4) are also decreased, and then only the vacuum
polarization graph corresponding to the second term of
the right side of (4) and the triangle graphs correspond-
ing to the third term of the right side of (4) are divergent.
Thus the axial anomalies in (4) are from the vacuum po-
larization graph and the triangle graphs. Notice that the
contribution of the first term of right side of (4) vanishes;
this is because these axial anomalies come from only the

one-loop diagrams, there is no axial anomaly at two-loop
and beyond two-loop levels, and no gauge propagator ap-
pears in the fermionic one-loop diagrams. So the gauge
field Aµ(x) can be regarded as a background classical field.

Now we consider the vacuum polarization graph and
the triangle graphs. At high temperature, since the tem-
poral component of the gauge potential A0(x) decouples
[10,11], the temporal component of the ground-state cur-
rent axial vector, 〈0|J05(x)|0〉, does not contribute to the
effective action, Ieff(A), because of the relation

δIeff(A)
δeAµ(x)

= 〈0|Jµ5(x)|0〉. (8)

At high temperature, fermions behave as massless; thus we
can neglect the fermion mass m. Then the algebra of these
γ matrices may be realized by the three two-dimensional
Pauli matrices. Therefore

γj = iσj , j = 1, 2, 3, γ0 = I (identity),γ5 = σ1σ2σ3. (9)

First we calculate the contribution coming from the
vacuum polarization graph. We denote

Πµν(k) =
∫

−

d4p1

(2π)4
Tr[γµγ5G0(p1 − k)]. (10)

Since what we require is the effective action, the γµ and
γν in Πµν(k) are to couple to gauge potentials Aµ(x) and
Aν(x) if we are considering (8). At high temperature, there
are only the spatial components in Πµν(k) of (10) because
of the decoupling of A0(x), and only n, m = 0 zero modes
in (5) and (6) are taken. Therefore we have obtained

Πij(~k) =
T

4π
εijlkl, (11)

where the indices i, j, l are taken over 1, 2, 3, and εijl is a
three-dimensional totally antisymmetric tensor. Although
there are εijl and γ5 when calculations for Πµν(k) are
done in (10), the dimensional regularization can be used
for Πµν(k) because of the one-loop level [12,13]; the in-
trinsic regularization method proposed in the literature
[14] can also be used, without the difficulties brought by
the definitions of γ5 and εijl in three dimensions, but the
results are the same. Here we have renormalized for zero
temperature, since the renormalization of ultraviolet di-
vergence at finite temperature is the same with one at
zero temperature [15].

We define e′ =
√

Te, where e′ is the three-dimensional
coupling constant with dimension [mass]1/2 in the Abelian
case, and e is the four-dimensional coupling constant that
is dimensionless in Abelian case. We also define the three-
dimensional gauge potentials Aj(~k) =

√
TAj(~k, k0 = 0) in

momentum space in Abelian case, but Aj(~k, k0 = 0) are
four-dimensional, where Aj(~k) have dimension [mass]−5/2

and Aj(~k, k0 = 0) have dimension [mass]−3. In the Abel-
ian case, the two triangle graphs lead to contributions of
opposite sign to the high temperature ground-state cur-
rent; therefore their contributions cancel each other. Thus,
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only the vacuum polarization diagram contributes to the
high-temperature ground-state current in the three-dimen-
sional space in the Abelian case, and the result is

e′

8π
εijl[∂jAl(~x) − ∂lAj(~x)], (12)

where Aj(~x) are the Fourier transformations of Aj(~k).
In the non-Abelian case, the contributions to the high-
temperature ground state current come from the vacuum
polarization graph and the two triangle graphs. They are

εijl

8π
TrFjl(~x) (13)

with

Fjl(~x) = ∂jAl(~x) − ∂lAj(~x) + [Aj(~x), Al(~x)]− (14)

Aj(~x) = g′T bAb
j(~x), (15)

where T b are generators of the gauge group, and g′ =
√

Tg
is the three-dimensional coupling constant of dimension
[mass]1/2 in which g is a dimensionless coupling constant
in four-dimensional space-time.

In view of the variational relation between the effec-
tive action and the ground state current, we have derived
the induced three-dimensional effective action in the high-
temperature limit for the non-Abelian case to be

ICS
eff (A) =

εijl

8π

∫
d3~xTr

[
1
2
Fij(~x)Al(~x)

− 1
3
Ai(~x)Aj(~x)Al(~x)

]

= πW (A). (16)

This is an anomalous three-dimensional effective action;
however, the conventional action in the three-dimensional
gauge theory is the original Yang–Mills action, i.e.,

IYM
eff (A) = −

∫
d3~x

1
2(g′)2

Tr[F jl(~x)Fjl(~x)]. (17)

As one knows, the dimension of gauge potentials, Aa
µ(x),

is
[Aa

µ(x)] =
d − 2

2
. (18)

For the three-dimensional theory, d = 3, thus the dimen-
sion of Aa

j (~x) is [Aa
j (~x)] = 1/2. After multiplying W (A)

in (16) by (2πµ)/((g′)2), and adding it to (17), we obtain
the effective action to be

Ieff(A)

=
∫

d3~x{ 1
2(g′)2

Tr[F jl(~x)Fjl(~x)] (19)

− µ

8π(g′)2
εijlTr[Fij(~x)Al(~x) − 2

3
Ai(~x)Aj(~x)Al(~x)]}.

It can be seen from the dimension analysis that the param-
eter µ in (19) has the dimension of mass. The second term
in (19) is the three-dimensional Chern–Simons topological
mass term, which violates parity conservation because of
the tensor εijl and produces a mass for gauge fields. The
W (A) in (16) is the Chern–Simons secondary characteris-
tic class [16].

3 Quantization of the Chern–Simons
coefficient

The effective action in (19) is not invariant under the non-
trivial (large) gauge transformations, but if the Chern–
Simons coefficient in (19) is quantized [5], the effective ac-
tion is invariant under a large gauge transformation. Re-
cently, the quantization of the Chern–Simons coefficient
has attracted considerable attention [17–19]. The action
with an added Chern–Simons topological mass term to
the usual Yang–Mills gauge theory in a (2+1)-dimensional
space-time remains invariant under small gauge transfor-
mations, but for invariance of the exponentiated action
under large gauge transformations to be ensured, the co-
efficient of Chern–Simons topological mass term has to be
quantized [5].

In the Abelian case [20], however, the Chern–Simons
coefficient is in general not quantized in the absence of a
topological charge; but the Chern–Simons coefficient must
be also quantized in the presence of a topological charge,
e.g., a magnetic pole, just as in the non-Abelian case. In
the following we will demonstrate this.

Using the two-loop perturbative radiative corrections
for the fermionic current vector in QED with a Chern–
Simons topological mass term in a (2+1)-dimensional space-
time, we look for the relation between the Dirac quanti-
zation condition [21] of a magnetic charge and the quan-
tization of the Chern–Simons coefficient; thus the Dirac
quantization condition of a magnetic charge leads to the
quantization of the Chern–Simons coefficient.

Let us consider the following Lagrangian in the (2+1)-
dimensional QED with a Chern–Simons mass term,

L = −1
4
F 2

µν − m

2
εµνλAµ∂νAλ − λ

2
(∂µAµ)2

+Ψ̄ [γµ(i∂µ − eAµ) − mf ]Ψ, (20)

where Fµν = ∂µAν − ∂νAµ; m, λ and mf are the photon
topological mass, a parameter of the gauge-fixing term,
and the fermion mass, respectively. The space-time is Min-
kowski with signature (+,−,−). εµνλ is a three-dimensio-
nal antisymmetric tensor. Our purpose is to find the rela-
tion between the quantization of the Chern–Simons coef-
ficient and the Dirac quantization condition of a magnetic
charge, in the presence of a magnetic pole in the Abelian
case; we therefore start with the electron current vector
Jµ(x) in an external electromagnetic field Aµ(x) with the
Chern–Simons topological mass term in 2+1 dimensions.

The ground-state current vector of fermion fields in a
(2+1)-dimensional space-time is

〈0|Jµ(x)|0〉 = 〈0|1
2
[Ψ̄(x), γµΨ(x)]−|0〉

= −Tr[γµG(x, x′)]|x′→x, (21)

where G(x, x′) is the fermion propagator in interaction
with an external electromagnetic field Aµ(x) which has
the Chern–Simons mass term and satisfies the following
equation:

(D/ − mf)G(x, x′) = δ3(x − x′) (22)
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Fig. 1. The two-loop Feynman diagrams for 〈0|Jµ|0〉. The solid
line stands for a fermion propagator, the wavy line stands for
a gauge propagator in the pure Chern–Simons theory (Dµν(k)
in (24)) the cross for e /A, and the black dot for eγµ

with
D/ = i∂/ − eA/ = γµ[i∂µ − eAµ(x)]. (23)

What we are considering are the effects of the Chern–
Simons mass term, so the photon propagator Dµν is taken
in the following form, which is produced by the pure Chern–
Simons term [22], i.e., the second term of the Lagrangian
in (20):

Dµν =
εµνλkλ

mk2 , (24)

where it is in momentum space, and we adopt the Landau
gauge λ = 0 in (20) in order to avoid the infrared diver-
gences [23]. In the (2+1)-dimensional perturbative QED,
the pure Chern–Simons effects brought by the fermion vec-
tor current in (21) are in the two-loop corrections in the
lowest order, so we have to consider the two-loop Feyn-
man diagrams for the ground-state current vector of the
fermion fields, 〈0|Jµ|0〉, in a (2+1)-dimensional space-time
in (21). The gauge propagators the appear in the two-loop
diagrams, and therefore the gauge fields are regarded here
as dynamical. These two-loop Feynman diagrams in mo-
mentum space are the diagrams (a), (b), (c), and (d) in
Fig. 1.

The contribution of Fig. 1(a) to the ground-state cur-
rent vector of the fermion fields, 〈0|Jµ|0〉, has the power of
e3, but the contributions of Fig. 1b,c,d to 〈0|Jµ|0〉 have the
power of e4. After calculating the contribution of Fig. 1(a)
to the fermion current, we discover that it vanishes. There-
fore, in the perturbative QED of 2+1 dimensions, the low-
est order of the nonvanishing contributions with the effect

of Chern–Simons term on the ground-state current vector
of the fermion fields is O(e4), and the corresponding Feyn-
man diagrams are the three diagrams (b), (c), and (d) in
Fig. 1.

We now consider the contributions of the three dia-
grams (b), (c), and (d) in Fig. 1. We first look at the
subdiagram in Fig. 1b, the electron self-energy. Its contri-
bution in momentum space is

Σ(p) =
e2

4πm
(p2 − mf/p)

×
∫ 1

0
α

1
2 [(1 − α)p2 + m2

f ]−
1
2 dα + 2mf (25)

where the Landau gauge has been adopted, and the pho-
ton propagator has been taken as the form in (24), in ac-
cordance with the pure Chern–Simons theory, and the di-
mensional regularization has also been used. We compute
the contribution Π

(b)
µν (k)Aν(k) of Fig. 1(b) in terms of

the electron self-energy Σ(p) of (25). Because we are con-
cerned with the pure Chern–Simons effects in Π

(b)
µν (k), for

simplicity, the electron mass mf in Πµν(k) can be omit-
ted, assuming the gauge boson mass m � mf . After a
tedious calculation, we get for Π

(b)
µν (k):

Π(b)
µν (k) =

e4

48π2m

[
−2

ε
− ln

k2

µ2 − γ + O(ε)
]

εµνλkλ,

(26)
where the dimensional regularization has been used and
ε = 3 − d, dimension d → 3, γ is a Euler constant, and µ
is an arbitrary mass scale.

The two diagrams (b) and (c) in Fig. 1 obviously give
equal contributions. We now turn to the diagram (d) in
Fig. 1. Similarly, we proceed to the cumbersome computa-
tion of the contribution Π

(d)
µν (k)Aν(k) of Fig. 1(d). to the

ground-state vector current of the electron fields. We have
also omitted the electron mass mf in Π

(d)
µν (k)Aν(k). We

compute the contribution Π
(d)
µν (k) in terms of the Ward–

Takahashi identities between the electron self-energy and
the vertex function, which is in the subdiagram of Fig. 1(d).
After a tedious computation for Π

(d)
µν (k), we obtain

Π(d)
µν (k) =

e4

12π2m

[
−2

ε
− ln

k2

µ2 − γ + O(ε)
]

εµνλkλ

(27)
where 3 − d = ε, (k2)ε/2 = 1 + (ε/2) ln k2 + · · ·, and
Γ ( 3−d

2 ) = − 2
ε − γ + · · ·. Ultimately, after adding the con-

tributions of the three diagrams in Fig. 1 to the fermion
vector current Jµ, we have obtained the total contribu-
tions of Fig. 1(b), (c), (d) to the electron vector current
Jµ in momentum space, i.e., the two-loop radiative cor-
rections; therefore,

Jµ(k) =
e4

8π2m

[
2
ε

+ ln
k2

µ2 + γ + O(ε)
]

εµλνkλAν(k).

(28)
For the Coleman–Hill result [24], in a massive matter-

coupled Abelian Chern–Simons theory, no higher loops
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contribute to the Chern–Simons term; only one-loop cor-
rection does. However, when the matter is massless, the
Chern–Simons term not only has the one-loop contribu-
tion but also has contributions from two loops and beyond
[25]. In our paper, electrons are massless, taking mf = 0,
so there are two-loop corrections to the Chern–Simons
term. This is consistent with other works [24,25].

We now transform from a momentum space into a po-
sition space to consider (28). The procedure of the Fourier
transformation to position space has been regularized so
that there is no infrared divergence because the power of
the momenta p in the denominator is less than four. In
the position space, the magnetic field is a pseudoscalar,
not a vector, and has only one component. Its direction
is perpendicular to the two-dimensional plane. In position
space, the magnetic field is

B = ~∂ × ~A(x) = εij∂iAj(x) (29)

where εij = ε0ij , i, j = 1, 2.
We now topologically map a plane onto a two-dimen-

sional unity sphere S2. The magnetic flux through the
sphere is ∮

S2

Bdσ =
∫

Bd2x = g (30)

by definition of the magnetic charge g contained inside
the sphere. There is a magnetic monopole with a magnetic
charge g.

The contributions of the self-energy counterterms and
the vertex counterterms corresponding to Fig. 1b,c,d can
be also readily computed. Here we have adopted the mini-
mal subtracted renormalization scheme. After having con-
sidered the contributions of these counterterms and renor-
malized for the quantities in (28), we finally get the result
in configuration space,

∫
J0(x)d~x = er =

e4
r

8π2mr

∫
~B · d~x =

e4
r

8π2mr
g (31)

where the zeroth dividual quantity J0(x) of Jµ(x) is the
electric charge density, and er and mr are a renormalized
electron charge and a renormalized Chern–Simons topo-
logical mass, respectively. This yields

1
2π

(eg)r = n, (32)

4π(
m

e2 )r = n, (33)

where n = 0, 1, 2, 3, · · ·. Equation (32) is called the Dirac
quantization condition of magnetic charge. Equation (33)
implies the quantization of the coefficient of the Chern–
Simons term. In Redlich’s work [6], e.g., all one-loop cor-
rections of the induced charge J0 are proportional to e2B.
This is consistent with our work. Our result is at two-
loop order; J0 is proportional to ((e4)/m)B, where m
is the Chern–Simons gauge mass. At the one-loop level,
J0 ∝ e2, there is no gauge propagator; at the two-loop
level, J0 ∝ e4/m, there is one. In the one-loop correction,
if there are monopoles, there is the Dirac quantization

condition of magnetic charge g, eg/2π = n, n = 1, 2, · · ·.
In the two-loop correction, if there are monopoles, there
is the Dirac quantization condition of magnetic charge,
and also the quantization of Chern–Simons, eg/2π = n
and 4πm/e2 = n. Thus it can be seen that we have estab-
lished a relation between the Dirac quantization condition
of magnetic charge and the quantization of the Chern–
Simons coefficient in QED of 2+1 space-time dimensions,
with the Chern–Simons topological mass term in the pres-
ence of any magnetic monopole with magnetic charge g.
It is easy to see from (31) that the Dirac quantization
condition of magnetic charge leads to the quantization of
the Chern–Simons coefficient, or conversely, the require-
ment of the quantization of the Chern–Simons coefficient
so that the nontrivial gauge invariance can be kept leads to
the Dirac quantization condition of magnetic charge. This
demonstrates that the Chern–Simons coefficient must be
also quantized in the Abelian case in the existence of a
topological charge.

4 Conclusions

By perturbative calculations of high-temperature ground-
state current, an additional anomalous three-dimensional
Chern–Simons topological mass term is induced in the
conventional effective action. This approach is different
from the four-dimensional theory in that the anomaly in
three dimensions appears just in the ground-state current,
rather than in the divergence of the ground state current.
This implies that not only must the anomalous term vio-
late parity symmetry, but it also produces a mass for the
three-dimensional gauge fields. In the three-dimensional
electromagnetic fields case, only the vacuum polarization
graph contributes to the high-temperature ground-state
current, and the induced anomalous term (∼ εijlFijAl)
implies that the propagator of a fermion coupled to the
massive vacuum polarization gauge bosons behaves like
a boson [26]. In non-Abelian case, the contributions to
the high-temperature ground-state current come from not
only the vacuum polarization graph but also the two tri-
angle graphs. We have also obtained the relation between
the quantization of the Chern–Simons coefficient and the
Dirac quantization condition of magnetic charge. This re-
lation implies that the Dirac quantization condition of
magnetic charge leads to the quantization of the Chern–
Simons coefficient in a (2+1)-dimensional QED with the
Chern–Simons topological mass term, so the Chern–Si-
mons coefficient must be also quantized in the presence of
a magnetic monopole, just as in the non-Abelian case.

The computations of the induced Chern–Simons term
in three dimensions beginning from the high-temperature
limit of a four-dimensional theory with an axial anomaly
are different from those in Redlich’s work [6]. Our ap-
proach is also different than other authors’ previous works
[18,20]. Thus there are some significant results.
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